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ANALYSIS OF PLANE-PLASTIC-STRESS PROBLEMS WITH AXIAL

SYMMETRY IN STRAIN-HARDENING RANGE ‘

By M. H. LEE Wu
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SUMMARY

.4 simple methodis derelopedfor sobing piizne-pfastic-strew
problerm with axial symmetry in the strain-hardening range
which h basedcmthe deformationtheory o] PJastidy employing
the jinite-etrain concept. lle equations dejini~ the problems
are jirst reduced to two ~“multaneou.snonlinear di#erential
equations inrobing hco dependent tnzrz”ables:(a) the octahedral
ahea~strain, and (b) a ~rameter indicating themtio of pm”nci@
&%sses. By multiplying & load and ditiding the radiu~ by
an arbitrary constant, it is possible to mire these problems
without iterationfor any oalue oj the modijied load. Zie con-
stant is determinedby the boundary condition.

This methodi8 applied to a &cular membraneunder pressure,
a rotuting disk without and with a central hole, and an injintie
plate with a etkular hole. Tm materiuf8, Inconel X and
16+5-6, the octahedral8hearstre88-strainrelatwns oj which do
not follow the power law, are used. Di&”bution8 of octahedml
shear strain, a8 well a8 oj pm”ncipalstre88e8and 8tmin8, are
obtained. These remits are compared with the results oj the
aatneproblemsin the ela8ticrange. The rariatwn oj load with
man-mum octahedral shear strain oj the member is also
in.re8t&ated.

Thejo[lowing conclusion can be drown:
1. Inasmuch as the ratio8 oj the prinoipal stre8ses remain

w8entially constant during loadingjor the materialsconsidered,
the dejormaiion theo~ i8 applicable to thi8 group of problems.

2. In pla8tic deformation, the di8tn”but&m8q~ the principal
~trainsand oj the octahedral8hearstrain are le88uniform than
in the elustic range, although the dtitribution8 oj the principal
8trc38eswere more uniform. 2%.4stress-concentrationfactor
around the hole is reduced with plastic deformation, but a high
s~rain.-ooncentrationfactor OCCW8.

3. For the rotating dtik and the infinite phte the deformation
that can be eushrined by the member before failure depends
mainly on the maxitnwrnoctahedralshear strain of thc material.

.$. The added load that the member could sustain betweenthe
on8d oj yt”eldingandjaifure depended muin.lyon the octahedral
shear 8tres8+tmin relations of the mater..al.

INTRODUCTION

In the design of turbine rotors, it is desirable to how the
detailed stressand strain distributioti in the strain-hardening

range and the increase in load that can be s~ta~ed bet~een .-
the onset of yiehling and faihme. It is aIso de&able to know _,
the eRec@ of a notch or a hole in a tubine rotor or other .
machine members that are stressed in the strain-hardening
range. If a member is thin, it can be analyzed on the basis
of plane stress. For problems of this type for ideally plastic ._-=
material, A’atil obtained aolutions for a thin plate with a –
hole and a flat ring radidly stre=ed (ref~~ce 1), ~d ~
N’adai and Dormell obtained a solution for a rotating disk
(reference 2). For materiaIs having strain-hardening
characteristics, a solution of plane-atreasproblems has been _

..=

obtained by GleyzaI for a circuIar membrane under pressure
(reference 3). The concept of infinitesind strain was used
and the solution was obtained by an iterative prooedure ~
with a good first approximate solution. The plastic laws ‘“
were aIways satisfied by using a chart given in reference 3.
In reference 4, a trial-and-error method is given for a rotat ing : _
disk with very small plastic strain, in which the elastic .
stresses and strains are used as the first approximate values. -:
k experimental immstigation of high-speed rotating disks.——
is given in reference 5; dkhibut ions of pl=tic strains (’low- :
rithmic strains) for Werent- types of disk are measmd.
Reference 6 gives an experimental investigation of the burst “-
characteristics of rotating disks; stress at the center of the- “-
disk is calculated by =suming that. the material behaves =
elastically at the bupt speed; the avemge t~enti~l st=. ._~
along the radius at burst speed is also calculated.

A simple method of soh-ing plane-plastio-str== problems ._
with a-til symmetry in the strain-harden~mgrange for finite
strains was developed at the A7ACALewis Laboratory during ..
1949–50. This method is based on the deformation theory
of Hencky and Xadai (references 7 to 9), which is derived _
for the condition of constant directions and ratios of the
principal stresses during loading. The equations of equilib- ~-.
rium, strain, and plastic Iaw are reduced to two Simdtaw ..
ous no&near difTerentialequations involving three variables, -
one independent and two dependen~, that can be integrated ..-
numerically to any desired accuracy. These variables are ..-
the proportionate rdhd distance, the octahedrd shear
strain, and a parameter a that indicates the ratio of principal
stresse9. The magnitude of variation in calcdated values ...=
of the parameter a with change in load ‘directly indicates
whether the deformation theory is applicable tOthe problem. ~-

1Snpemdes N.ACA TX Z217,“AOSIYSISM PLme-Stres Probkm Wtth Add Symme@ In StrsIn-Hmlenh’u Rmg’e” by M. H. L& ‘FtL 1933.
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The method developed” is applied to: (1) a circular
membrane under pressure, in order to compare results
obtained by this method with those obtained by G1eyzal
(reference 3); (2) rotating disks without and with a circular
central hole, in order to investigate pltistic deformation in
such disks and the effects of the hole; and (3) an infinite
plate with a circular hole or a flat ring radially stressed, in
order to investigate the effects of the hole in the strain-
hardening rarige.

In the investigation of (2) and (3), two materiah+Inconel
X and 16-25-6, with diilerent strain-hardening characteri-
stics were used in order t.o determine the cfFect of the
octahedral shear stress-strain curve cm plastic deformation.
The oct~edral shear stress of thesa two materials is not a
power function of the octahedral shear strain, so that more
genertd information can be obtained. Distributions of
stressesand strains of the same problems in the elastic range
are also calculated for purposes of comparison.

Acknowledgment is made b Professor D. C. Drucke.r for
his discussion of this work and for his stiggestion to examine
whether the logarithmic strain could be applied correctly
to the present problems and his suggestion to plot the
stress-straincurves of Inconel X and 16–25-6 on a logarithmic.
scale in order to show that thwe materials do not obey the
power law.

SYMBOLS

The following symbols are used in this report:
A, B, C, D, E, F coticient.s of nonlinear differential equa-

a
b

c

Q, H, J, L
h

h~~i,
K*, KZ
k
P
?’

8
u
w
z
CY

1’
E

e

tions; functions of a, ~, and ~

initial radius of hole
initial outside radius of membrane, rotat-

ing disk, or flat ring
initial outside radius of plate, very large

compared with radius a
trigonometric functions of a .
instantaneous thickness of membrane,

rotating disk, or plate
initial thickness of membrane, disk, or plate
arbitrary loading constants
constaht having a dimension of length
pressure on membrane
radial coordinate of undeformed membrane,

disk, or plate
arc length
radial displacement
&tial displacement .-
rmialcoordinate
parameter indicating ratio of principal

stresses .
octahedral shear strain
logarithmic strain (naturrd strain), loga-

rithm of instantaneous length divided by
initial length of element

anbfplmcoordinate

P
u

7

;ubscripts:
b
c
o

1, 2, 3
r,e, z’

mass per unit volume
true normal stress, normal force per unit

instantaneous mea
octahedral shear stress
angular velocity

at radius b
at radius c
at center for member without hole; ~t

radius a for member with couccutric
circular hole

principal directions in general
principal directions: radial, t.angcwtinl,nnd

axial directions

STRESS-STRAINRELATIONSIN PLASTICDEFORMATION

The’ deformation theory of plasticity for ideally plastic
materials was developed by Hencky from tlm theory of
Saint VKinant-Le~-Mises for tho cases in which the directions
and the ratios of principal stresses remain conskmt during
loading [reference 7). Naclai extended the theory to in~ludc
materkda having strah-hardening characteristi~ (refwenccs
8 and 9). The conditions for the deforrnation theory have
been emphasized by Nadai (reference 9, p. 209), Ilyushin
(references 10 find 11), Prager (reference 12), and Druckcr
(reference 13). Experiments conducted by Davis (rcfcrcncc
14), Osgood (reference 15), and others on thin tubes subjcchxi
to combined loads with tlw directions and the ratios of the
principal stressesconstan~throughout the tube tindremaining
constant during loading show that good results cnn be
expected from the deformation theory,

In .rnore recent. experiments on thin t.ubw by Framkcl
(reference 16) and Davis and Parker (reference 17), it has
been shown that even with considemblc variation of the
ratios of principal stressesduring loading the str~insobtitincd
from the experimentswere in good agreement with the strains
predicted by usc of the deformation theory. Further C.Y-
perimental investigation is needed to detcrmino the mtcnt
to which the varintion of ratios of prindipn] stresses is
permissible with the deformation theory. However, when
the variation is small (approxfiattdy 10 percent over th[!
strain-hardening .~n~e), the doformntion theory cnn bc
expected to give good remdt.s.

In the present problems with axial symmctly, [he direc-
tions of the wws of the principal stressesrcmnin fixed during
loading and it is probalie that the ratios of principal strains
and of principal stressesalso remain approximately constun~.
The deformation theory previously discussed is Wmforo
used. The stress-strain relations arc as follows:



PLANE-PLASHC-STRESS PROBLEMS Vi’H’11ASIAL SYMMETRS LW STRAIN-HARDENING RANGE 361

(4tl)

(4b)

From equations (1), (2), and (4a) or (4b), the following
relations are obtained:

For pkme-stress problems a-s=O. It is con-renient to use
cylindrical .coordmates for the problems considered; the
principal directions 1, 2, and 3 in tie preceding equations
become radial, circumferentkd, and axial directions, re-
spectively. The equations thus become

er+e#+Ez=cl (la)

and

‘,=HU+) (6a)

“=2(”+,) (6b)

l’y
‘Z=i; [

—:(ar+ at)1=–(G+E8)(6c)

When u, and CJare expressed in terms of e, and q, there is
obtained

(7)

Because large deformations in the strain-hardening range
wiU be considered, the concept that the change of dimension
of an element is irdiniteaimfd compared with the origid
dimension of the element is not. accurate enough. Hence,
the finite-strain concept., which considers the instantaneous
dimension of the element, is used. (The equations of in-
finitesimal strains considered as
strains are given in appendk A.)

special cises of finite
The stress is then equal

.

to the force divided by the instantaneous area and the __–
strains are defied by the foIIo-ivingequation: -’c

6(1,)
ii(q)=r

where lj is the instantaneous length of a smalI element having
the original length of (lj)Oand j is any principaI direction.
During plastic deformation, the phistic strains at a particulm-
state depend on the path by which that state is reached.
For the paths rdong which the ratios of principal sh%ases
remain constant during lea@, however, the octahedral
she~r stress-strain rdation, the value of the octahedral shear
dram, and the values of the principal strains are defied by
the initial and final states (references 14, 15, and reference 9,
p. 209); 6(cJ is then an exact differential and

-_
-- ,---

—,

—

—

-. .
..._

lj 1*
“=lO%ji‘r ‘*’=m (8) LA—

It should be noted that the condition under which eauation ‘-
(8] was obtained is aIso one of the conditions uncler’ whic& _~

the deformation theory is derived; wlong as the deformation “–
theory is applicable, equation (8) can also be used.

EQUATIONSOF EQUILIBRIUMAND STRAINS
INVOLVING DISPLACEMENTS

CJBCUI.AR MEMBRANE UNDER PR~tlRE

Equationa of equilibrium and equations of strain are de-
rived for a circular membrane under pressure. The mem-
brane considered is so thin that bending stress w be
n@ected (reference 18, p. 576). Figure 1 shows the mem-
brane clamped at the rim and subjec&d to a pressure p and

x

t

.-

.-

—

-.

>

FmrEE L-ThhI chcdw nwmbiww (cinder premue) and Us ekment In defamed SW.

a small element defined by A@and AS ttiken at radius r+u _
in the deformed state. In the undeformed state, the same ._
element would beat radius r and defied by A8and N. The.
dot ted lines represent an undeformed membrane. The in-
stantaneous thickness of the element and the stresses acting
on We element are also shown in the figure. Two principal. _
stresses are u, and m, and P is the angle between Urand the .:
original radial direction. -—-
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Equations of equilibrium.-When all the forces acting on
the element in the direction of u, are summed up, the follow-
ing equation of equilibrium is obtained:

u,(r+u)hA13-(u, +Au,) [r+u+A(r+u)] A@(h+Ah) cos AP+

2U’A’(’+A’)S”$ & ~cm p—pA$ (r+u)A9 sin~=

When A(r+u) approaches zerc as a Iimit, the differential
equation of equilibrium may be obtained:

(9)

A cap of the membrane bounded by radius r+u and the
forces acting on it are shown in figure 2, Summing up the
forces in the zdirection yields

pflr+u)’= u, ~ 2xh(r+u)

or

‘&)]’=[-J’-’
(lo)

z

—-— .— - —.,
+

-—- —-—--r

I
FIaurm 2.—Capof membmne whh radiusr -1-u In deformed state.

Equations of strains.-Inasmuch m the element at radius
r, defined by A13and Ar in the undeformed state, is moved by
the application of pressure p (fig. 1) to radius r+u and
defined by A13and h, by use of equation (8) the strains are

ds
<r=log, —

dr

r+u ‘
ee=logc —

r- ”-”

h-
et=loge —hi.it

Then

“r=%){’+[&l’}’”
r-l-ue%=—

r

(lIa)

(Ilb)

h
““=G (Ilc)

ROTATING DISK

Equation of equilibrium.-A disk of radius b and thickness
h, rotating about its axis with angular speed u, and an ekment

taken at radius r+u, defined by AOand A(r+u), are shown in
figure 3 with all the external forces ncting on tho element.

FIOUtE $.—Rotating disk and its element.

Summiti~ up all forces acting on the element ~ the radial
direction yields .

a/r+u)hAO-(u,+Aa, )[r+u+A(r+u)]AO(h+ Ah)-l-

2cT;[A(r+u)] (h+; Ah) sin $–

[ 1O?r+u+~A(r+u)
px[(r+Ar)*-r~A8h _O

~r Ml—

When A(r+u) approaches zero as a limit, the following
equation of equilibrium is obtained:

(*+”) d(r+u)==(as–a,)h–pu%%ti,~ & (12)

Equations of strains,-The strains are

J(r+u)_—
dr (13a)

r+u
eft= —

r
(13b)

he~,= =— (13C)

INFINITE PLATE WITH CIRCULAR HOI E OR FLAT RING RADIALLY
STRESSED

An idnita plate uniformly strwwed in its plane in all
directions and having a circular hole is shown in fibwre 4.
The whole system is equivalent to a very large circular p]nte
of radius c with a small concentric circular hole radially sub-
jected to the same uniform shwas u on the out,er boundary.
The solution obtained for such a plate within any rwdius 6
can also be considered as a solution of a flat ring with cmtw
radius 6 and inner radius a, that is, uniformly loaded al the
outer bsmndary with the radid stress ub obtained in the
plate SOIUtion.

The equations for this case can be obtained in a manner
similar to the two previous cases, or by simply setting dw/dr
and w eqmd to zerc in equations for the membrane, or bs-
setting u-equal to zero in the equation for the rotating dkk.
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EQUATIONSOF EQUILIBRIUMAND COMPATIBILITYIN
TERMS OF PRINCIPALSTRESSES AND STRAINS

CIECULAE MEMBEANE UNDER PREE9UEE

A set of ten independent equations (equations (la), (3),
(5b), (6a), (6b), (9), (10), (ha), (lib), and (llc]) involving
the ten unknowns a,, m, Enq, & ~, r, h, u, and w define the
problem of the circular membrane under presure. If qua-
tion (1lb) is difTer@iated with respect to r and combined
with equation (1la),

‘%=h+i-w”-’{14)

Substituting equation (10) in equation (14j to eliminate w
yields the following equation of compatibility:

(15)

Equations (9) and (15j can be simplified by using equations
(11) to eliminate u and h, which results in

aml

The ten equations defning this problem are now reduced to
seven independent equations, (la), (6a), (6b), (5b), (3), (16),
and (17), with the seven nnknowns u,, m, ~r) ~, E,, Tj md T.

The solution of the problem is simphfhd by introducing an
arbitrary constfint k into equations (16) and (17]:

where k is any arbitrary unknown con~tant with the dimen-
sion of Lmgth. By use of the two parameters r/k and
pk/hti*,, it is possible to solve the problem in a simple, direct
way without the use of the iteration. This will be further
discussed in the section “Methods of Numerical Integration.”

EOTATING DISK

Foi the rotating disk there are nine independent relations
(equations (la), (3), (fib), (6a}, (6b), (12), (13a), (13b), and
(13c)) with the nine nnkuowns u,, r,, e,, ~, e., y, r, h, and u.
If equation (13b) is differentiated with respect to r and
combined with equation (13a), the follovring compatibility
equation is obtained:

(19) I

(b)

(a)

(c)

—

.-

—
..-

— —

.-

—.
(a) InFinitnplate with cimxYachole unUOruLYYstmasedIn 1t9plane In all dhwtkm.

.—

(1) Flat i+ngradially s~
(c) Element.

Fmu=A-M3mitepIde wfthekedar hde,Pdr @mdhlIyW rweeGmdLtsdement in . _

dehrmed state.
.-

A in the case of the membrane, u and h can be eliminated “-
from the equdibrium equation (12} by USLWequations (13), ‘
which yiekls —

dc de.
r J+ a~r—= (fft—r,)e @“-Q —pc3rzec-J

dr dr
(20]

The nine equations defig this problem are now reduced— ‘-=
to seven independent equations, (la), (6a), (6b), (5b), (3), ._
(19), and (20}, viith the seven unknowns r,, m, c,, ~, e., r, ;
and y.

The sohxtionof the problem is made simpler by introducing ““
an arbitrary eunstant k into equationa (19) and (20): .._

J
(21) ‘i
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By use of the parameters r/k and uk instead of r and U, a
simple direct solution is possible for any arbitrary value of
uk with k to be. determined by the boundary condition.

lNFI~ITEPLATEWITHCIRCULARHOLEOR
FLAT~CJ EADIALLYSTRESSED

The equations of equilibrium and compatibility for the
infinite plate with a circular hole or the flat. ring radially
stressed are:

T dur——

W3+”’%)-(U’-”’)’(’’-’”

T dee——

()

_e(fr<O}—1
ad :

(22)

The probkn is defined by equations (22) together with
equations (1a), (6a), (6b), (5b), and (3) (seven equations
with seven uulmowm).

EQUATIONS OF EQUILIBRIUMAND COMPATIBILITYIN
TERMS OF OCTAHEDRALSHEAR STRAIN AND PARAM-
ETERINDICATINGRATIO OF PRINCIPALSTRESSES

In the preceding section, dieplacements axe eliminated
from the equations, which result in seven equationhvolving
the seven unknown quantities u,, au,e,, co, e~,~, and -t. The
quantity ~, can be expressed in ternw of e, and ce (from
equation (la)): Two of the four mhOW ~~)ue~~f~~d ~e
cm be eliminated by using equations (6Qand (6b) or (7). The
quantity 7 is a known function of Y that is experimenta~
determined. The problem is then reduged to one involving
three unknowns. Obtaining the solution of the resulting
equations is not, however, a simple matter; the itarative
process is usually needed.
. It is proposed that this can be avoided by using the fol-
lowing transfowation: ~.

u@+ur=3&T sin c1

CT,+ar=fircosti” ““

or

u~= J~T(#sb a—C08 a)

Ue= J ““”}~r(fi sin a+cos” a)’

(23)

Then u, and ao satisfy equation (5a), because the yielding
surfaces are elIipses according to the deformation theory.
The octahedra shear straw r, a function Of~, in tie preced-
ing equations varies with r/kand also with Ioading. Such a
transformation has beem used for ideally plastic. material
(r=constant) by Nadai in the section “Yielding in Thin
Plate With Circular Hole oc Flat Rings Radially Stressed”

(reference I, p. 189} and for a .rotatiug disk (reference 2).
From equations (6a), (6b), and (23), the principal strains
aIso can .be expressed in terms of.~ and a:

–~.(ti -–w cog 4
“-2+2

1 (24}
=~ (siria+ W COs,~)

‘8 2.@ J

The equations of equilibrium and compat ibilit.y~ior the
three probkms considered herein are then obtainod i ‘tmms
of y and a “in the following form:

‘%’B%TC

*%)’Ei+)” ,. ,.t. ‘

(25)

where tfie coefficients A, B, C’, D, E, and F are functions of
q T, and r/k. For the circular membrane under pressure,

(26)
For the rotating disk, from equation (21),

‘y Cos a
A=(X ;OS a+sin .)–(W sin a–cos a) ~

( )

Tdr 7 sina 1
ll=(~”iin a–cm a) ;~–— -457

c=2(cos:)’(-fi’m”)-ti’(”’)’+(iY’fis’””
D=(@ sin a–COS a)7

E=–(W. cos a+sin a)

[ (-@nSa)]
F=2& l–e—

(27)
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For the inthite plate with a circuhwhole, from equation (22),

c=, (~, ~) ,(-+7-”)
D=(J3 Sin a-cos a)‘y

E=–(/i Cos a+sin a)

[ (-+,*=]].F=2JZ l–e

TTlth these transformations,

(28)

.

the scdution of the probkms
is reduced to simply a numerical rntegration of the t~o simul-
t.aneous cIitkrential equations (equations (25)) involving the
tWO tiOVLUS ~ md m Furthermore, tie parameter 7,
being the octahedral shear strain, directly indicates the
stage of plastic &formation at any point under any load.
(In plastic problems, according to the deformation theory,
the individual stress and strain distributions cannot give x
clear a picture of the stage of plastic deformation as can the
octahedral shear straim) Mao, the parameter a indicates
the ratio of the principal stresses or strains. At any point,
if a remains constant during loading, the ratio of principcd
stressesat that point remains fixed. The vahe of a obtained
at each point in the calculation during loading directly indi-
cates whether or not the deformation theory is applicable to
the problem.

The -ialue of a is known at the boundaries or the center.
This value can be determined from equations (23) and (24).
For the circular membrane under pressure,
when rib =0,

r~= u@

a=~=l.5708

-whenrjb= 1,

a=; r=2.0944

For the rotating disk without a hole,
when r/6 =0,

c~= CM

~=;= 1.5708

when r/b=l,

For the rotating disk with a hole,
when r/a=l and r/b= 1,

.— . .

LY=; =O.5236 . .
—

. -a!. . .

For the finite plate with a circular hole,
when r/a =1,

. .
u~= o

-–3

+().5236 .=
..~

when r/a approach= c/a or a ~alue that is huge compared ‘
with 1,

..s:

-.
u~= crt .,-<+

-*...—

a= f=l.5708
:—

.—-.—,=-
METHODSOF NUMERICALINTEGRATION —-

- ----
Two methods are demdopecl to solve the dii7erentialequa- “’-‘-

tions (25). In the &t method, the differential equations ‘--~
are numerically integrated along rik, which is considered the ...=
independent variable. (h the second method, a is con- ““Z
sidered the independent mriable.) Because many terms in l_
the equations are trigonometric functions of a, the use of a . .

as the independent variable considerably reduces the work .~–
of computation. -

NumericaI integration with r/k as independent variabIe.—
I!Zquation(25) can be written in the foIIowing forms:

-=Q--
r da CE–FB ~
– ‘= AE–DB

()
‘d ;

r d-y FA–CD
– ‘= EA–.BD

0
‘d ;

1

(29)

--
d7

-.
At any point., if ceand 7 are known, & and —d(r/?i]can be _

.-=

cakdated by equations (29). At the boundari~ or he ~
center, a is known, but 7 is determined by the Ioad. Only ‘~
one value (unknown) of 7 correspond@ to a particular load _
@ts on each boundary; therefore it is difiictit to start the- ..
numerical integrations on the boundary with the correct. .:
value of 7 corresponding to a given load. Also, in plastic
problems cowring the strain-hardening range, the method.=
of superposition is in~alid. T.JsuaIly,a method of iteration ._
is used to solve the problem (for ewmple, references 3 and 4)..
In the method presented herein, an arbitrary but unknown 1
constanb k has been introduced in equations (18), (21), and ~.<
(22). For the cases considered, the terms in the eqtiations”

()
F’”’that involve load are always multiplied by r, so that ~

‘anbefit’-6)w~ ‘q”atiom“8){=’ .’
()and (W)z as (&)2 ~ z in equations (21) and (27).

--
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The numerical integration then can be started’ at the
inner boundary (or at the center if there is no circular hole
at the centm-).by using the known vahms of a., a. dcsired

()
pk 2

value of 7., and an arbitrmy value of ~ for the
inti

membrane or of (uk)a for the rotating disk. The numerical
integrations can then bo carried out, obtaining values of a
and 7 at diflerent values of r/k, until a progressively rearlms
the value that satisfk the outer boundary condition.
Because the valuo of r is known at the boundrwiee, the value
of k can be determined for the selected value of TO. ‘l’he
number of points and the formulas used in the calculation
depend on the accuracy required (references 19 rind 20).
If the formula for evaluating definite integrals is applied
after using tho forward integration formula (references 19

and 20), great accuracy can easily be obt~ined.
The procedure used herein to obtain solutions is the same

for each problem. Calculations are started from the inner
boundary (or from the center if there is no circular hole at the
center) with the known value of a., the desired value of
yd, and the arbitmy loading term. The parametm a. is
equal to 7/2 at r/b= O for the membrane and for the solid
rotating disk and is cqual to r/6 at r~a= 1 for the infinite
plate with a circukm hole and for the rotating disk with a

()
pk 2

hole. The arbitra~ loading terms are ~ and (uk)2 for
h;

the membrane and the rotatimz disk. reme.ctivelv. Then

inner boundary or the center, are obtained from equations
~29). The following forndas for forward integration are
used to determine the first approximate values of a and y
at the next point (al* and T1*):

}

a,.=%+[(;)l-(f)~ [%)]o (,O*,

,,*=70+[(;)1-(i)J[*)]o

By substitution of al* and ~1* into equation (29), approxi-

‘a-wof[%)llmd[%)llmeobtihdand

the second approximate values of al and T1 (al** and ~1**)
can be computed from the following formulas:

The values of al** and .yl**are substituted into equation (29)

[01
da

again in order to calculate the wducs of —- IIIM1

d;,

dy

[01Byuse of the following formulas for cvalual itg
d;-

1 .

defiite integrals, the-volumes of al and ~1 me c~lcul~twl:

This procedure is applied to the ntxx~point, ntul so forth,
untfl the value of a reaches the required value of ab at. the
outside boundary (a~= 2/3 T at r/b= 1 for the mrmbrntw,
a~= ir/6 at r/b= 1 for the rotatin$j disk, rmd ab= T/2 at
r/a = c~afor the thin plate with a circular hole). Innsmueh as

.-

the loading terms are determined as follows:
For the membrane,

(31a)

For the rotating disk,

o(cob)’=(tok)’ ; 2

For the infinite plate w-ith a circular

(31b)

holr,

70

.()r+u
t,=uh, ~ = ahf=Ue h‘%= u ,n@ -r@ (3kj

e

or for the flat ring radially stressed at tho outside dinmeter
b,

where tt and tb are the imsions pcr unit original circum-
ferential length at r=c and r=b, respectivdy.

Numerical integration with a as independent “variable,—
Equatiofi (29) can be writkm in the following forms:

(32)

Dy use tif equations (26) to (28) and expansion of #‘a@
into a series, the following equations are obtained:
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For the circular membrane, from equations (26], .-

For the rotating disk, from equations (27],

For the infinite plate with a circulm hole, from equntions (28),

J

(35)

J

(33)

-.

(34) –..

--,.—

.-

.—

The symbols (?3H, J, and L are trigonometric functions of ___:
a only; K71and Kz are arbitrary loading constants. T&e
symbols ~1, f~,fa, and g are f~ctions of a and 7; ~ iS a
function of a, 7, and r)k.

For the soIution of an infinite plate with a circular hole a 0
is the independent variable. The procedure of numerical
integration is similar to that used in the method in which
r~kis the independent wu-iable. The fit four terms of the _
series of ef(a‘y] are used; the accuracy of the remdtis the same ..1
as that of the previous method, but computation is reduced
by one half.

..-
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.-

Both methods presented herein are used to obtain the solu-
tions for the given values of 7,, The purpose of the present
paper is to obtain solutions for the entire strain-hardening
range and the methods developed are very convenient for this
purpose. If, however, a scdution for only a particukw value
of loading is required, it can be obtained by interpolating
between values obtained from two or..three solutions corre-
sponding to loading near the specified value.

NUMERICALEXAMPLES

Membrane.-In order to compare the results for the
circular membrane obtained by the method deveIoped herein
with those obtained by Gloyzal (reference 3), one numerical
solution for infinitesimalstrain is calculated by using the r(y)
curve of the tensile test in figure 1 of reference 3. Inasmuch
as reference 3. states that: “For simplicity, strain will be
taken to mean conven$iorudstrain (& –dso)/ds@ where ds and
d80are final and initial arc length, respectively.”, equations
(25a) and (36] given in appendix A for in6nitesimal strain
are used. The calculation-is started at T/k=o.005. Valu~
of ~,= 1.5708, YO=0.0299, and pk/htn(,=55,920 are used.

Rotating disk.-~umerical solutioni”for the rotating disk

(a) Linear-scaleplot.

Ik
+.<

gg,
$&-
+?w-
Uw

j$

Loqari+hmic ocfcf%drol sheer si+oi~ y

(b) IL#vithrnic-x’dsI)lot.
FIGURE 5.—&?@h~ ShWr sWS&?h.h OUIWS.

for bib strain (equations (25) and (27)) are cahmlntol,
The T(7) curves of two matwials, Inconel X and 16-25-0,
are plotted in figure 5 (a), Thcso data wero supplied by
W. F. Brown, Jr., H. Schwartzbart, and 11.11. Jones. Thr. .
same 7(7) curves me plotted on logarithmic coordinates
in figure 5 (b). These materials, Inconel X and 16-25-fj,
for which r is not a powar function of ~, wcro chosen so that
more general information Canrbe obt.ttincd. Tho given
octahedd shear strm-strain curves (fig. 5) of them two
materials have not been corrcctwl for the triaxia]ity and

nonuniform stress distribution introduced by necking and
consequmtly do not represent the exact stress-strainrclation
after necking of these two materials. Tho sulutioneobtained
from the. T(Y) curves of tho tensile test after necking can,
however, represent the solutions corresponding to mntcrials
having &e exact ~[~) curves shown in figure 5 fmd for simplic-
ity such materiaLsare herein referred to as “ lnconcl X“
and “ 16–25-6”.

The calculation for the solid rotating disk is started at
r/k= O.0U5,as iu the case of the membrane.

Thrca solutions are also obtained for tho rotating disk with
a central hole, using hmonel X. Calculations &o started
at r/a=l.

h numerical examples for the rotating disk mo given
in the fo~owing table:.

Solidrotating disk

M&rlal ,, JKi= :FW

I I I I

I 1 ..

1 (
Rotating disk with cfntrul hole

1“
-..> J .

MWrIal 2., ‘7*. ~@OEY
I1 I i i .— .._

Inconelx &al ‘ IxIll ~“2XKP
:% . 4XI17

f I —

Infinite plate with circukr hoIe,—The calculations for
the i.r&ite-plate yith a circular hole aro carried out for the
case in which c,=O at r/a= 1. Tho valuo of a, nt r/a= 1
is then equal to 0.5236. (When u. is different from O at
r/a= 1, the corresponding value of a. should bo used.) The
same materials as in the previous problem mo considcrwl.
The numerical examples are: i

..-. ..-——w..MataIal 7*

InconeJX 0.04
.1162
. ls71
.W

le-293 0.04
. ls71
.30

.,,. .
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Pmpom%-de radki o’isticq P/b

FIGrEEfi.-~uiation al pdnetpid stmeseswkh Drqxdanate mdlm distance.

RESULTSAND DISCUSSIONS

The radial and circumferentird streeses r, and m, respec-
tively, obtained for the circular membrtineare plotted aa@nst
r/b in &ire 6. Tvio curves, taken from reference 3, cor-
responding to calculations for about the same pressure used
in the present calculation, are included in the figure for com-
parison. In the present calculation, the r(~) curve given in
figure I of reference 3 and the same Wltesimal-strain defini-
tion based on the original dimension are used. The initial
thickness hi.[t is also used for Cotitencr ~ the c~c~ation
rather than the instantaneoua thickness ii, which is used in
reference 3.

The variations of a with the radius for the rotating disk
and with the radius for the fit e plate with a circular hole
are plotted in 6gges 7 (a) and 7 (b), respectively, for different
loads and materiaIs. The variations of a with y. (or loadti)
at various radii for the rotat@g disk and the fite plate
with a circular hole me plotted in figures 8 (a) and 8 (’b),
respectively. SimiIar curves for the ratio of the principal
stressesu,/m are shown in @res 9 (a), 9 (b), and 10. Com-
parison of figure 7 and figures 9 (a) and 9 (b) ahmvsthat the
variations of a with radius are very sidar to the variations
of u,/cr~with radius, although the relation between a and
ur/u~is not linear. r

XumericaI examples for a membrane with a large strain are
not calculated herein, because the result of reference 3 is
sufficient to gi-re an approximate variation of the ratios of
principal stresses along the ra~lus during loading, although
the ~tesimal-strain concept is used. The variatiom of
the ratio of principal stresseswith radius for different loads,
based on the values of u, and at given in figures S and 9 of
reference 3, are calculated and plotted on @ure 9 “(c).

(a) Rokit@ disk.

%pcr~iomfe rodiol dis time, r[a-

(tI) InfinIteplatewith hak.

FfficP.s 7.—Va&Uon9 M & u with pro~te mdlus&?tice fm Inc@nelX and -
16-25-6.

\ - “:.
..-

-=4

The values of u, are plotted against u~ at various radii-- .—
under different loads for the rotating disk and the intinite
plate with a circular hole b &ures 11 (a) ~d ~~ (b). “~~”- .
heav-y solid and dashed curves represent the values of u,
and at at d&rent radii for any given load and are called ~
load@~ curves. The loading curve moves away from the-
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(a) I I I
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L

4
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L8
r/a

-: a
1:

6’
9 - ---- - ____ ____

___ ---- 4

-- ___ --- __
1.2 -.. 3

-- ---—- —
--- -“ 2

--
.8

-m—. -..—— .. f.5

t.o
(b)

.4 0 .1 .2 .3
Maximum oc +ahedrul shear sfrat’h; r.

(a) Rotating Wk.
(b) InSulte plate with hole.

FIGURE8.—Ve.dationof meter a with rrradmrunwtahedml abeoreMalnat dltTerentradii.

origin with increasing lord. The hght solid and dotted lines
connecting the di.flerentloading curves at a given radius and
estending to the origin represent the values of u~and UOat
different loads for any given radius and are called loading
paths. Also shown in the Iigurm are the yielclirtgsurfaces,
which are ellipsesunder the deforms tion theory. -

A clear picture of the variation of the ratios of principal
stresses in thk group of probhms with diflerent loads for
Inconel X, 16-25-6, and the material used in reference 3 is
given in figures 7 to 11. It is evident that the ratios of
principal str~ses remain essentially constant during loading.

(a)Rotathrgdisk.

q
b’
- -.

:
; -,

$
m

%
.s
.:
x
%
o

.Q
-+.
4

u .-l 2“3 4 5 6 7 .8 9 I&l
Propcr+&a+e rodkl A +o*e. r/a

(b)IdnM Phtewith hole.

FIGUBE9.–VarIatIons of ratio of princ[pd se with prqwtlonatc rodlrd Wstanm.

The deformation theory is therefore applicahlo to lhis group
of problems, at least for the materials considered.

The variations of y and ~/70 with radius are plotted in
figures 12 and 13, respectively, for the rotating disk and tho
infinite plate with a circular hole. It is interesting to noto
that the curves in figure 13 for difTercntloads for the same
material me quits close together. For tlfferont. mtiicrials,
the curves of figures 7 and 9 are also close, but tho curves of
figure 13 are not as close together.
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The distributions of principal stressesand principal strains .:
along the radius for the rotating disk and for the ~te plate ~“.:
with a circular hole are plotted in figures 14 and 15, respec-
tively. For comparison, the variations of c~/(uJ~,~/(et)b?and “~
~/-ybwith radius for both the ehrsticand the plastic rarge are ~
plotted in &ures 16 and 17. (The equations for the elastic .=
case are giwm in appendix B.) If only the streaa distribu- ‘----
tires for the elastic and plastic cases me compared (figs. ~
16 (a) and 17 (a)), it is seen that the stressesare more tiform -—-
in t-hi plastic state; but if the distributions of the principal
strains and the octahedral shear strain for the elastic and the
phi.sticcmes are -pared (&g. 16 (b), 16 (c), 17 (b}, and
17 (c)j, it is evident that a less-uniform strain distribution is
obtained in the plastic state. It is of special interest in the
case of the finite plate with a hole to note that with plastic
deformation the stress-(tangential stress) concentration
factor around the hole is reduced; instead there is a h&h
cuncentration in principal strain and in octahedrd shear

..-
---
—
.—

..-
—

-

—

.-.-
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strain. A similar conclusion regarding the concentration
factor around a circular hole in a tension panel is gi~en in
references 21 and 22.

The quantities ud(rs]~,r,/(u,]~, d(~r)., md 4*)0 EJOLW the

radius for the rotating disk and m/(ud 0 and d(q) ~ for the
infite pIate with a circukm hole are plotted in figges IS
and 19, respectiveI.y. The curves represent% ~r/(ur)., +/(%) o

md st/(.sJ, for InconeI X and 16-25-6 and different ~alues
of 7, are close together; but the curves of a~/(us)a are qyite
far apart for the two rnaterids, as weII as for different mdues
of 7..

The reIation bstween the rotating~peed function p(~)’

and ~. for the rotating disk and the relation between the.. _
tension per unit originaI circuInferentiaI length tb/hw and –
-y. for the infinite pIate with a hole are pIotted in iigures 20 (a] ““ ~
and 20 (b], respectiveIy. It is shorn in these.@.res &~ ,.
p(d)2 and tJh~ increase considerably for Inconel X and
increase onIy sIightly for 16-25-6 m the wdue of 76 increases
flom 0.04 to 0.30.

F@res 7, 13, and 16 to 19 show that for the plate with a
hole, the variations of a, 7/70, ~/(c,)~, and et/(~), tith radius
are ewentiaIly independent of the value of 7. for the plate
and the r(~) curve of the material, at least for the materiaIs
considered. These results show that the deformation. that

_—
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-
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FIWXE l’il.-Compariwr of atxessend. strain dfstrlbutlrmefw dfITerentrnrderlah and for
dMxent msxfnturoootohedmlsheexstrrdrmof fnflnhplats with efretderhole.

can be accepted by the plate before faihre depends mainly
on the maximum octahedral shear strain (or ductility} of the
material, which would not be true if the strati &stributions
were a function of the T(7) curve. For the rotating disk,

0 .t .2 .3 d

Maximum ocfohedral shear sfmiq v.
(a) Mlfd rotathg disk.

(b) Flat rhtg rdally stress@L

FIamE!2&Relstfon between mtathrg-smedfunettonand maximum oet@edral ahrarstmhl
for dkk and relation between tensfonper tit or+dml ChCUrnfer~tl~k~h for Pl~te.

however, a slighl effect of 70 and the T(7) curve is appmcnt
on the straim; this effect wems ~ bC caused ~Y t~~e ~o&-
force term of the disk.

The stress distribution that will determine the Ioad which ‘
a member can sustain is now considered. I?igurcs 16 10 19
show that the variation of IJo/(m).wit~lradius dcpcl~ds oU
the r(~) curve of the material and on the WIIUCof 7, for the
member. Figure 20 indicates that the load also depends on
the 7(7) curve. It therefore follows that the added load
that the member can sustain between the onset of yichling
and faihme depends on the r(~) curvo of the matmird. Tho
octahedral shear (or effective) stress and strain curve of tlw
material should be used as a c.ritcrionin Selectil]ga mntcrirtl.:

-.
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(d) Variation of IHinoi@ _ with Pro~Le mdkd distance.
FIGURE2L-Continu&3. RotWrrg disk with hoIe. Inmnel X y., 0=.

for a parLicu@ member under a particular loqd~ condition,

because consideration of the maximum octahedral @ear

strain onIy (or duct.ili~y ordy) of the material is insticient.

The variations of a, ~, a,, q e,, q, and Y/~b witi mdius for

three rotating disks ~it~ a Lole are sho]v~ in figure 21. Tha
values of theratios of outer to inner radius 6/a of these three
disks equal 5.32, 12.45, and 28.12. These disks were made

. of Inconel X and had a maximum octahedral shear strain
70 of 0.3 at the inner radius. of the disk. The tangential
stress m, the tangential strain co, and the octahedral shear
strain 7 are ZMK%less uniform for the disk with a hole than
for a solid rotating disk. The ratio of maximum to minimum
octahedrd shear strain 7a/7bis equal to 7.41 for a disk with
b/a= 5.32, 11.75 for a disk with b/a= 12.45, and 14.1 for a
disk with b/@= 28.12; for a solid disk. of the sww material,
the ratio 70/% is about 5.3.

The load, rotating-speed function P(aj)’, for disks of
hmonel X reaching a maximum octahedral shear strain 70 of
0.3 at the inner radius of the disk and having different ratios
of inner to outer radius a/b is represented by the solid curve

o“ .2
Fkqacrtiok4te rrdial d;~funce, r/b B

~n-

(e) Vadetion oi ratioof rctahedrd*ear etrainto rnidmnm octakdml cheeruU81nat outer
radiuswith propertlormtemdird dlstanm.

FIuurtE2L-Cmrckrded. Rotatfng W WIUIhale. Inconcl X; 7.. O.WM.



PL4NE-PLASTIC-STRESS PROBEEMS WITE-AXI& SYMMETRY IN STRAIN-HARDENING RANG10 379

in figure 22. The dashed curve in figure 22 is obtained by
extending this solid curve toward a/b= 1, where the value of
p(ab)* can be determined by considering a rotating ring with
a/b+l. The figure indicates approximately how the Ioad
p(@* varies with disks hatig diflerent ratios of inner to
outer radius and reaching the same maximum octahedral
shear strain at the inner radius of the disk. The -due of
p(ab)% for a solid rotating disk made of InconeI X with
~,= 0.3 at the center of the disk is indicated in the same&we.

CONCLUSIONS
The resuhs obtained for a membrane, a rotating disk

without and with a hole, and an iniinite pIate with a hole
strained in the strain-hardening range in which the elastic
strains are negligiiIe compared with the pIastic strains for
Inconel X and 16-25-6 in the absence of time and tempera-
ture effects and unloading show that:

(1) The method de-reIoped not. onIy accurately Solves
the plane-plastic-stress problems with a.ti symmetry in a
simple manner but aIso shows cledy the octahedrd shear
strain distribution and the ratio of principal stresses dining
loading.

(2) The ratio of the principaIs tresses in the cmes in-resti-
gakd remained essentially constant during loading and,
comequentiy, the deformation theory is applicable to this
group of problems for the materials considered.

o] The distributions of principal strains and octahedral
shear strains in the plastic state are 1- uniform than those __
m the ehwtic state, although the distributions of tangen@
stresses appear more uniform m the plastic state. ‘l&
stress concentration factor around a hole is reduced in the .,,
plastic state, but. instead there is a high concentration of ..__
principal strain and octahedral shear strain. -.

(4] The ratios of the strains along the radius to their .
maximum value are essentially independent. of the value of ._
the maximum octahedrd shear strain of the member and
the octahedd shear stress-strain curve of the material
Hence, the defomnation that can be sustained by the member
before failure depends mairdy on the maximum octahedral j.
shear strain (or ductiht y] of the material -—

(5) The strew distributions depend on the octahedral
shear stress-strain curve of the mataM. Hence, the added
load that the member can sustarn betwem the onset of ...-
yiekling and failure depends mairdy upon the octahedrd
she= (or effective) stres%straincurve in the strain-hardening :
range of the material. ....-——
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APPENDIX A

.4’~~+B’; ~=c’
kd(;) d(;)

—_

“%+E’%-”
For the circular membrtme under pressure,

.l’=@cOs a+sill a

(7’=2 C05 a

D’=(Ji sina–COS et)-y

E’ =-–(~ cos a+ti a)
r VkT -

CLEVELA.ND,OHIO, February 28, lt?50

EQUATIONS OF’ EQUILIBRIUM AND COMPATIBILITY FOR
INFINITESIMAL STRAIN IN TERMS OF . AND 7

The final forms of the equilibrium and compatibility
equations for small strains are given in this section. The
concept. of infinitesimal strain is deiined as follows: The
changes of dimensions are small compared with the originaI
dimensions but twe large enough m that the elastic strain
can be neghoted. The equationa presented can be obtained
either by direct derivation as was done previously or by
reducing the equations for finite strains through expanding
the db’) terms in series and neglecting the small terms.
For infinitesimalstrain, the coefficients (functions of a aud -r)
.4, B, C, D, 1?,and 1?of equations (25) are each denoted by
a superscript prime but the coefficients (functions of a and T)
are &npIer than those for large strain.

(25a)

(36)

For the rotating disk,

A’= & COS a~SiIl a

B’=(W Sk a–c&i a) ~~

“=2ms +@’(;)’+

D’=~fi SiU a–COS a,l~

E’=–(ficos a+sin a]

F’=2 @ (COSa)y

For the infinite plate with a circukm hole,

A’=@cos a+sin a

B’=(~sin a–cos a) :$

0’=2 Cos a

D’=(X sin CE-cos a)

E’=–(~cos a+si.n a)

F’=2 q% (COS a)~

.—

(37)

. (38)

For small strains, the coefficients A’, B’, C’, D’,E’, and F’
are used in equation (29) instead of A, B, C, D, E, and 3’,
respectively.
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APPEPWMX B

EQUATIONS FOR ROTATING DISK AND INFINITE PLATE
WITH CIRCULAR HOLE IN ELASTIC RANGE

BOTATING DISK

For a solid rotating disk with @e radial strew at the
periphery (r=b) equa~ to zero, the principal stresses can be
expressed by the following equations (reference 23, p, 68):

=,=3+U
~ pd(b’–?q

#+. u @LL@:p&
8 8

where v is Poisson’s ratio. At r=b,

(a,),=; pdb’(1–v)

Dividing equation (39) by (u@)~yields

(39)

}

ibrv)[’-(m ~
(39a)

%=+%[’-%%)1

The stress-strain relations of plane-stress problems in the
elastic range are:

er=~ (Cr—w)
E

~u=+ (Uo– vu,)

(40)

where E is the modulus of elasticity in tension and com-
pression.

Substituting equations (39) into equations (40) yieIds:

or

[

3+V ~ 3(1 +P) r—. —
(:;* 2 (II–F 3

}fi=w’-wxl (’oh)

The equations for the octahedral shear stress and strain
given by equ~tions (4a), (4b), and (5a) can be applied to both
the ekwtic and the plastic ranges, but equation (5b) can be
applied only” in the phwtic range. ._~e octahedral. &ear
strain in the elastic range can be calculated by equation (4b)
or by using the following equation:

~=2(l+v) 2(1+V) @ *_u,a,+a,9,,*
E ‘= E— y (Ur (41)

Substitute equations (39) in equation (41) to obtain:

@ O+$(pdbq
7=im(3+v)

[(3+v)2–4(1+ v)(3+v) (~)’+(7+2v+7F) (~)~’” (41a)

or
T 1_—
;—2(1—P)

[(3+ v)’–4(1+v)(3+v) (f~+(7+2v+7F) (~)’]’” (41b)

The value of Poisson’s ratio v for the two materials arc:

ZI=O.29 for lnconel X (referenco 24)

v= 0.286 for 16–25-6 (refereuce 25)

INFiNITE PLATE WITH CIRCULAR HOLE

For a uniformly loaded infinite plate with u circular l~olc,

the principal stru= are (reference 23, p. 56):

U,=;+2C 1 (42)
g~= ;+2C

where A and C are arbitrary constanta. For tho pl~to con-
sidered herein, the boundary conditions are:

ar=o at r=a

These boundary conditiom are used to determine the
arbitrary constants ~ and C, which yield

or

-.

(42n)

(42b)

.—
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Substituting equations (42a) into equations (4o) yields

or

1 (ur)b
(I –,) (:)’–(1+,)

~r=—
%-(;) ($

(1 –v) (;)2+(1+P)
.s=;,:/;$ (:)’

Substituting equations (42s,) into equation (41) yields

or

(43)

(43a)

(44)
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